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Abstract

Human motion segmentation in time space becomes at-

tractive recently due to its wide range of potential appli-

cations on action recognition, event detection, and scene

understanding tasks. However, most existing state-of-the-

arts address this problem upon an offline and single-agent

scenario, while there are a lot of urgent requirements to seg-

ment videos captured from multiple agents for real-time ap-

plication (e.g., surveillance system). In this paper, we pro-

pose an Online Multi-task Clustering (OMTC) model for an

online and multi-agent segmentation scenario, where each

agent corresponds to one task. Specifically, a linear autoen-

coder framework is designed to project motion sequences

into a common motion-aware space across multiple collab-

orating tasks, while the decoder obtains motion-aware rep-

resentation of each task via a temporal preserved regulariz-

er. To tackle distribution shifts problem between each pair

of tasks, the task-specific projections are further proposed to

align representation across the motion segmentation tasks.

By this way, significant motion knowledge can be shared a-

mong multiple tasks, and the temporal data structures are

also well preserved. For the model optimization, an efficien-

t and effective online optimization mechanism is derived to

solve the large-scale formulation in real-time applications.

Experiment results on Keck, MAD and our collected human

motion datasets demonstrate the robustness, high-accuracy

and efficiency of our OMTC model.

1. Introduction

One of the major challenges for video analy-

sis/understanding [37, 15, 44, 29, 39, 34] is to localize and
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Figure 1. The framework of our proposed model. The motion

knowledge among a network of multi-agent can be efficiently

transferred via the motion-aware space D, where different shapes

and colors denotes different motions and agents, respectively.

classify human motion among long, untrimmed videos,

e.g., in security surveillance and health-care. In order

to cluster a long sequential human motion into several

short and non-overlapping fragments, many methods have

been introduced to address this temporal data clustering

problem, e.g., motion-based [38], temporal proximity

based [13, 7] and representation based [12, 21, 17, 32, 33]

methods. However, existing motion segmentation works

are performed upon one agent. That means these methods

segment each video individually, which cannot benefit from

diverse and enriched knowledge from a network of multiple

agents for the motion segmentation tasks. In this paper, our

work investigates how to apply online knowledge transfer

learning into multi-agent human motion segmentation task.

For the transfer learning framework, most recent works



[23, 8, 31, 19, 4] have witnessed superior performance vi-

a learning several effective domain-invariant features from

two different domains (if each agent is treated as a do-

main), or improving the clustering performance by trans-

ferring knowledge among the related tasks [40, 26, 42] (if

each agent is treated as a task). However, the adoptions

of most recently-proposed transfer learning models are not

suitable in the human motion segmentation task. Further-

more, there exist two challenges in this online multi-agent

motion segmentation problem: 1) Segmentation Space Con-

sistency: for transfer motion segmentation problem, differ-

ent agents could involve different actions, e.g., full-body

motion such as Running as well as upper-body motion such

as Basketball Dribble. 2) Distribution Disparity: the dis-

tribution disparity among two different agents exists due to

dynamic backgrounds, photometric variations, etc, which

can further lead to the distribution shift problem. To this

end, multi-agent motion segmentation is dramatically dif-

ferent when comparing with single-agent offline scenario.

To address above challenges, as shown in Figure 1, we

propose an Online Multi-task Clustering (OMTC) model

by incorporating linear autoencoder paradigm with general

cross-task framework. Taking the encoder-decoder paradig-

m, an encoder is setup to consecutively project different

tasks into a common motion-aware space with temporal reg-

ularizer, which can link all the learned motion segmentation

tasks in different agents. Meanwhile, the decoder exerts an

additional temporal constraint to reconstruct the original da-

ta, which ensure the motion-aware space is directly derived

from all the agents. For the cross-task framework, we mit-

igate the distribution divergences between different agents

by jointly learning task-specific projection for each agent,

which can maintain the manifold structure of different a-

gents. For model optimization, we derive a general online

learning formulation for handling large-scale data, and fur-

ther encode the optimization problem via an alternatingly

direction strategy. After constructing an affinity graph us-

ing the encoding and decoding matrices, multiple segments

of each agent can be grouped via spectral clustering. Fi-

nally, we evaluate our OMTC model on Keck, MAD and

our collected datasets, and the experiment results demon-

strate the effectiveness of our model when comparing with

the state-of-the-art single and multi-task clustering models.

The novelty of our proposed model is threefold:

• We develop a novel model called online multi-task

clustering model (OMTC) for multi-agent human mo-

tion segmentation task. To the best of our knowledge,

this is an earlier work to consider the problem of con-

secutively unsupervised human segmentation task a-

mong a network of agents.

• A linear autoencoder is used to derive a motion-aware

latent space across multiple agents. Meanwhile, two

graph regularizers are used to capture the temporal in-

formation of encoder and decoder for better clustering.

• We present an efficient cross-task strategy to mitigate

the distribution differences of data among individual

agents. An efficient online learning algorithm is also

designed to learn the motion-aware latent space and

representation codings alternatingly.

2. Related Work

Our work mainly draws from subspace clustering, tem-

poral data clustering and multi-task clustering, so we give a

brief review on these three topics.

Subspace Clustering [20, 36, 18] is a classical topic has

been introduced to automatically group the data into low-

dimensional subspace. For instance, sparse subspace clus-

tering (SSC) [5] adopts the sparse representation of data for

clustering; instead of sparse constraint, low-rank represen-

tation (LRR) [22] can uncover the underlying data structure

and remove the noisy by finding the lowest rank representa-

tion; least-square regression (LSR) [24] designs an efficient

regression objective with Frobenius norm. Different from

the above methods which are based on batch optimization

and have to load all the clustering samples into memory dur-

ing optimization, [6] designs an online algorithm for Robust

Principal Component Analysis (RPCA) problem, which is

just based on stochastic optimization of the batch RPCA.

To online implement LRR, [27] develops a novel online al-

gorithm of LRR, which can reduce the memory cost from

O(n2) to O(pd). However, these methods above can not ef-

ficiently tackle the time-series data or multi-agent task well

since they ignore the temporal information and cross-task

correlation among data.

Temporal Data Clustering methods aim to

group/segment a long temporal data (e.g., action video) into

several meaningful and non-overlapping parts. To achieve

this, [43] adopts a dynamic time alignment kernel to

group time-series data, and further use it in human motion

segmentation. [9] learns a multi-class SVM to discriminate

among temporal clusters, and determines the start and

the end of each segment. To incorporate the temporal

graph constraint, temporal subspace clustering (TSC)

[21] proposes to learn expressive codings for temporal

clustering by a dictionary learning method. However, these

methods need to collect all the data before the optimization

process, and are difficult to obtain an expected result.

Multi-task Clustering appeals a growing interest in ar-

tificial intelligence community due to its benefits of si-

multaneously clustering multiple tasks [28, 2]. Basically,

multi-task clustering [40, 26, 42] allows transferring useful

knowledge among different clustering tasks to improve the

performance. In this paper, our OMTC model mainly adopt-

s multi-task clustering technique to human motion segmen-

tation task (e.g., security surveillance system), where each

agent corresponding to one task receives its sequential data



in a batch manner, and collectively improve segmentation

performance among a network of multi-agent.

3. The Proposed Model

3.1. Multi-agent Motion Segmentation Problem

Given a network of T agents with T 1, . . . , T T tasks,

where each agent faces an unsupervised consecutive motion

segmentation task (we assume that each agent encounters

an individual task), and each task has a set of nt training

data samples Xt ∈ R
d×nt , and its probability distribution

P(Xt). The intention of multi-agent motion segmentation

problem is to uncover shared knowledge among all the seg-

mentation tasks, and give the motion alignment matrix for

each segmentation task.

3.2. Preliminaries

Consider the situation that we have human motion da-

ta {(Xt)nt

i=1}
T
t=1 for T agents, and the target is to improve

the performance of motion segmentation via transfer learn-

ing. The existing transfer learning methods mostly learn a

projection function F : Xi �→ Xj to uncover the com-

mon latent features. Basically, the common subspace may

not well model the motion interactions across different tasks

due to the existing of various structures. To mitigate this is-

sue and inspired by [14], we propose an autoencoder based

framework which connects multiple collaborating tasks by

studying their common principle motion characteristics

In the encoding process, the input matrix Xt for the t-
th task can be decomposed as the product of a code matrix

D ∈ R
d×k with a linear encoding matrix V t ∈ R

nt×k, i.e.,

Xt ∼ D(V t)⊤, where the code matrix D containing com-

mon principle motion characteristics is shared by multiple

tasks, called as latent motion-aware space. For the decod-

ing process, the code matrix can be decomposed into the

product of the decoding matrix U t with the original input

matrix Xt, i.e., D ∼ XtU t with U t ∈ R
nt×k. Therefore,

the encoder-decoder framework for the t-th task can be de-

fined by minimizing the following formulation:

min
D,Ut,V t

∥

∥Xt−D(V t)⊤
∥

∥

2

F
+λ1

∥

∥D−XtU t
∥

∥

2

F
, (1)

where the first term decomposes the original input matrix

Xt into an encoding matrix (V t)⊤ and a motion-aware ma-

trix D, which ensures the latent representative motions can

well capture the original involved motions. The second term

customizes the motion-aware matrix D can be derived from

the original input matrix Xt via a decoding matrix U t. In

the following, we introduce how to link the segment task of

specific agent accurately.

3.3. Online Multi-task Clustering (OMTC)

In addition to the principle motion characteristics among

all the tasks, another challenge we concern about is that

motion data in two tasks have different domains, e.g., t-

wo tasks Xi and Xj have two different distributions with

Xi ∈ R
di×ni , Xj ∈ R

dj×nj . Take action segmentation

task in surveillance system as an example, we have a series

of action shots captured from two different scenes. Directly

transferring the segmentation knowledge from one task to

another one, the segmentation performance will be unsatis-

fied. Thus, tt will be desirable that two projections can bring

the data from two domains to a common low-dimensional

space, and not lose too much information available in the

original task. To facilitate this, we consider adding a task-

specific projection to each task, and use the defined motion-

aware matrix D as a bridge. Thus, we can reformulate our

objective function as the following formulation:

min
D,{Pt}T

t=1
{Ut,V t}T

t=1

T
∑

t=1

(

∥

∥P tXt−D(V t)⊤
∥

∥

2

F
+λ1

∥

∥(P t)⊤D−XtU t
∥

∥

2

F

)

,

s.t., P tXtHt(Xt)⊤(P t)⊤ = I, ∀t = 1, . . . , T,
(2)

where P t ∈ R
d×pt is the projection matrix corresponding

to the t-th task, pt is the dimension of the t-th task. The

constraint P tXtHt(Xt)⊤(P t)⊤ = I can preserve the data

variance after adaptation, where Ht = I − 1
nt
1, and 1 is

all-one matrix. Thus, the distribution shift between different

tasks could be well addressed via the bridge D ∈ R
d×k, and

the discriminative knowledge across different tasks could be

reused to facilitate the segmentation performance.

Temporal Laplacian Regularizer: Due to the fact that

human motion data is a sequence of time-series data, it also

needs to introduce a temporal constraint function to incor-

porate the temporal information in time series Xt. Different

from the previous method [21] which just imposes tempo-

ral regularizer on the encoder matrix V t, in this paper, we

capture the sequential relationships among Xt on both en-

coding and decoding matrices, i.e.,

f(V t)=
1

2

nt
∑

i=1

nt
∑

j=1

wij

∥

∥vti − vtj
∥

∥

2

2
= tr((V t)⊤LtV t),

f(U t)=
1

2

nt
∑

i=1

nt
∑

j=1

wij

∥

∥ut
i − ut

j

∥

∥

2

2
= tr((U t)⊤LtU t),

(3)

where Lt which is a temporal Laplacian matrix is defined

as that in [21]. Thus, the target of multi-agent segmentation

task can be reformulated as the following formulation:

min
D,{Pt}T

t=1
{Ut,V t}T

t=1

T
∑

t=1

(

∥

∥P tXt−D(V t)⊤
∥

∥

2

F
+λ1

∥

∥(P t)⊤D−XtU t
∥

∥

2

F

)

+λ2

(

tr((U t)⊤LtU t) + tr((V t)⊤LtV t)
)

,

s.t., P tXtHt(Xt)⊤(P t)⊤ = I, ∀t = 1, . . . , T,
(4)



where λ1 > 0 and λ2 > 0 are trade-off parameters to

balance different constraint terms. Notice that with these

temporal constraints, frame xt
i and its sequential neighbors

{xt
i−s/2, . . . , x

t
i+s/2} are encouraged to hold the similar

codes in encoder matrix {vti−s/2, . . . , v
t
i+s/2} and decoder

matrix {ut
i−s/2, . . . , u

t
i+s/2}.

With the obtained matrices V t and U t for the t-th task,

a graph matrix Gt is then generated for the sequential clus-

tering procedure. Note that U t and V t are symmetric and

can be expressed by the same parameters, i.e., U t = V t.

Such a design can make Gt(i, j) = ut
i(u

t
j)

⊤/ ‖ut
i‖2

∥

∥ut
j

∥

∥

2

or Gt(i, j) = vti(v
t
j)

⊤/ ‖vti‖2
∥

∥vtj
∥

∥

2
, where ut

i and vtj are

the corresponding coding of xt
i and xt

j , respectively. How-

ever, this strategy can ignore the differences between the

representability of the encoder V t for original space Xt and

the selectablity of decoder U t from Xt, respectively. So we

define the graph Gt as ut
i(v

t
j)

⊤/ ‖ut
i‖2

∥

∥vtj
∥

∥

2
in this paper.

With the generated G, an effective clustering algorithm (i.e.,

Normalized Cuts/Spectral Clustering [25]) is then used to

generate the final clustering results.

4. Model Optimization

In general, most motion segmentation models focus on

the offline setting, and need to access every frame in each

iteration of the optimization. However, for many important

applications (e.g., health-care and surveillance system), this

optimization process is quite inefficient. Moreover, it has

to be re-performed on all collected samples when a new

sample/action is added, which is not practical in these ap-

plications. To this end, we present an online optimization

algorithm for the objective function in Eq. (4), which will

have lower computational cost in terms of memory space

and CPU time than offline algorithm. The basic ideas are:

• The motion data for each task are given in mini-

batches. Formally, we use m ∈ {1, 2, . . .} to index

each time stamp when a batch of new motion data ar-

rives, and the data in each batch is from the same task.

• We introduce several statistical records to store the pre-

vious knowledge, so that batches of coming motion da-

ta can be used iteratively to update variable P t’s, and

further refine the motion-aware space D.

Based on the basic ideas, we have the following objective

function at each time stamp m:

min
D,{Pt}T

t=1,

{Ut
(1:m)

,V t
(1:m)

}T
t=1

T
∑

t=1

(
∥

∥

∥
P tXt

(1:m) −D(V t
(1:m))

⊤
∥

∥

∥

2

F

+λ1

∥

∥

∥
(P t)⊤D −Xt

(1:m)U
t
(1:m)

∥

∥

∥

2

F

)

+λ2(tr((U
t
(1:m))

⊤Lt
(1:m)U

t
(1:m))+tr((V t

(1:m))
⊤Lt

(1:m)V
t
(1:m)))

s.t., P tXt
(1:m)H

t(Xt
(1:m))

⊤(P t)⊤ = I, ∀t = 1, . . . , T,
(5)

where the subscript m denotes the value of a variable in the

time stamp m, and the subscript (1 : m) denotes the cu-

mulative values of a variable from time stamp 1 to m. For

instance, Xt
m denotes the motion data arriving at time s-

tamp m for the t-th task, and Xt
(1:m) denotes all the motion

data has been received for the t-th task until m. Basical-

ly, if we directly adopt an offline alternating method to this

objective function, the computational complexity will dra-

matically increase as more data come. To reduce the com-

putational complexity, in the next section, we introduce how

to efficiently solve our proposed model when we receive a

batch of data Xt
m at time stamp m.

4.1. Solving for {U t
m, V t

m}Tt=1:

With the fixed projection P t and matrix D, U t
m and V t

m

for each task are the variables in this subproblem, and the

model in Eq. (5) can be expressed as:

min
{Ut

m,V t
m}T

t=1

T
∑

t=1

(

∥

∥P tXt
m −D(V t

m)⊤
∥

∥

2

F

+ λ1

∥

∥(P t)⊤D −Xt
mU t

m

∥

∥

2

F

)

+ λ2

(

tr((U t
m)⊤Lt

mU t
m) + tr((V t

m)⊤Lt
mV t

m)
)

.
(6)

After setting the derivative of Eq. (6) with respect to V t
m’s

and U t
m’s to zero, we can have the following equations:

λ2L
t
mV t

m + V t
mD⊤D = (Xt

m)⊤(P t)⊤D,

λ2L
t
mU t

m + λ1(X
t
m)⊤Xt

mU t
m = λ1(X

t
m)⊤(P t)⊤D.

(7)

From the equation above, we can notice that the optimiza-

tion equation of V t
m is a standard Sylvester equation, which

could be effectively optimized by adopting existing tools,

e.g., Bartels-Stewart algorithm [1]. The solution of U t
m can

be given as follows:

U t
m = ((Xt

m)⊤Xt
m + λ2/λ1)

−1(Xt
m)⊤(P t)⊤D. (8)

4.2. Solving for {P t}Tt=1:

With the obtained encoding V t
m’s, U t

m’s and motion-

aware matrix D, the optimization problem of variable P t

for the t-th task can be denoted as:

P t =argmin
P t

∥

∥

∥
P tXt

(1:m) −D(V t
(1:m))

⊤
∥

∥

∥

2

F

+ λ1

∥

∥

∥
(P t)⊤D −Xt

(1:m)U
t
(1:m)

∥

∥

∥

2

F

=argmin
P t

tr
(

P t(Xt
(1:m)(X

t
(1:m))

⊤+λ1(P
t)⊤DD⊤P t

− 2D(V t
(1:m) + λ1U

t
(1:m))

⊤(Xt
(1:m))

⊤)(P t)⊤
)

,

s.t., P tXt
(1:m)H

t(Xt
(1:m))

⊤(P t)⊤ = I.
(9)



Eq. (9) can then be solved by using generalized Eigen-

decomposition as follows:

(

Ct
m + λ1(P

t)⊤DD⊤P t
)

ρ = γXt
(1:m)H

t(Xt
(1:m))

⊤ρ,
(10)

where γ denotes the eigenvalue of the corresponding eigen-

vector ρ for the generalized Eigen-decomposition formula-

tion. Ct
m is a statistical record to store the previous knowl-

edge and denoted as the following formulation:

Ct
m =

m
∑

i=1

Xt
i (X

t
i )

⊤ − 2D(V t
i + λ1U

t
i )

⊤(Xt
i )

⊤. (11)

Each P t can then be defined as [ρ0, . . . , ρp−1], where the

vectors ρi (i = 0, 1, . . . , p − 1) are provided by the mini-

mum eigenvalue solutions of Eq. (10), which can minimize

the objective function in Eq. (10).

4.3. Solving for D:

After ignoring other variables, D is the single variable in

this subproblem, and the formulation can be expressed as:

min
D

T
∑

t=1

∥

∥

∥
P tXt

(1:m) −D(V t
(1:m))

⊤
∥

∥

∥

2

F

+ λ1

∥

∥

∥
(P t)⊤D −Xt

(1:m)U
t
(1:m)

∥

∥

∥

2

F
.

(12)

Thus, the solution of D can be given as:

D = argmin
D

tr(D⊤D(Am + λ1I))− 2tr(D⊤Bm), (13)

where Am ∈ R
k×k and Bm ∈ R

d×k are statistical record-

s, and are defined as
∑m

i=1

∑T
t=1(V

t
i )

⊤V t
i , k × k and

∑m
i=1

∑T
t=1 P

tXt
i (U

t
i + V t

i ), respectively.

Finally, the optimization algorithm for our model is sum-

marized in Algorithm 1.

4.4. Computational Complexity

For the computational complexity of our model, the main

cost of learning new batch samples in Algorithm 1 involves

several subproblems, and begins by Eq. (7). The compu-

tational complexity for Eq. (7) is O(T (n2
m(k + n3

m)) +
∑T

t=1 dtn
2
m, where nm is the sample number. Next, up-

dating P t in Eq. (10) contains Eigen-decomposition, which

costs O(
∑T

t=1 dtd
2). The computational complexity of

solving D begins by computing Am and Bm, which takes

O(T (n2
mk) +

∑T
t=1 dtnm(p + k))). Then computational

complexity of solving D is O(T (n2
mk) +

∑T
t=1 dtnm(p +

k)+dk2). Finally, the time complexity of each iteration part

is O(T (n2
m(k + n3

m) +
∑T

t=1 dtnm(p + k + nm) + dk2).
Since k is usually small when comparing with the dimen-

sion of feature and number of sample, our proposed OMTC

model is thus computationally efficient.

Algorithm 1 Online Multi-task Clustering (OMTC)

Input: Observed samples {Xt}Tt=1, parameters d ≤ dt,
λ1 > 0, λ2 > 0, zero matrix {Ct

0}
T
t=1, A0 and B0.

Output: D, {U t, V t}Tt=1

1: for i = 1, ...,m do

2: for t = 1, ..., T do

3: if isFirstAccess the sample Xt
i then

4: Initialize P t via PCA;

5: else

6: Compute V t
i via Eq. (7);

7: Compute U t
i via Eq. (8);

8: Compute Ct
i via Eq. (11);

9: Compute P t via Eq. (10);

10: end if

11: end for

12: Compute Ai via
∑i

j=1

∑T
t=1(V

t
j )

⊤V t
j ;

13: Compute Bi via
∑i

j=1

∑T
t=1 P

tXt
j(U

t
j + V t

j );
14: Compute D via Eq. (12).

15: end for

5. Experiment

This section evaluates the performance of our proposed

model via comparing with several state-of-the-art cluster-

ing models on three human motion datasets. We firstly in-

troduce the used competing models. Then several adopted

datasets and experiment results are provided. Finally, some

analyses about our model are reported.

5.1. Comparison Models and Evaluation

In our experiment, we evaluate our proposed model with

eight representative offline clustering (single and multi-

task) models and two online clustering methods. The brief

introductions are below:

Offline single-task clustering models:

• Spectral Clustering (SPE) [25], single task clustering,

which is a baseline clustering model.

• Low-Rank Representation (LRR) [22], which seeks

the best representation using a low-rank constraint.

• Ordered Subspace Clustering (OSC) [30], which can

achieve better performance for clustering sequential

data by enforcing the consecutive columns of coding

matrix to be similar.

• Structured Sparse Subspace Clustering (S3C) [16],

which combines the sparse representation and spectral

clustering. We adopt its SoftS3C version, since this

model yields slightly better results on the motion seg-

mentation task [17].

• Temporal Subspace Clustering (TSC) [21], which con-

siders the sequential information in time-series data by

constraint of a temporal Laplacian regularization term.

• Transfer Subspace Segmentation (TSS) [32], which in-

corporates useful information from source data to en-



Figure 2. Example frames of Keck dataset (Left), MAD dataset (Middle) and EV-Action dataset (Right).

Table 1. Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on Keck dataset: mean and standard

errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset.

Keck Criteria SPE[25] LRR[22] OSC[30] SoftS3C[17] TSC[21] TSS(M)[32] ESC-FFS[41] MTCMRL[42] OLRSC[6] ORPCA[27] Ours

Task 1
ACC(%) 40.46±1.5 36.12±0.9 43.03±2.4 47.93±2.6 51.45±1.1 52.54±2.4 47.00±3.8 47.61±1.6 52.61±0.2 40.78±2.7 60.68±2.0

NMI(%) 48.23±1.1 50.12±1.3 59.79±0.2 64.59±1.8 76.79±0.6 80.75±0.8 52.90±2.5 47.54±4.2 51.98±0.1 53.54±1.5 78.63±1.4

Task 2
ACC(%) 41.93±3.3 40.28±2.2 42.57±2.1 48.69±1.6 44.06±1.9 47.74±2.4 45.79±1.7 48.09±1.7 53.04±0.5 35.72±3.6 56.83±0.9

NMI(%) 53.08±2.4 48.13±2.1 50.97±0.1 66.91±2.3 71.03±2.4 74.68±2.9 53.39±2.3 45.87±3.1 48.35±0.2 51.49±0.3 77.52±1.7

Task 3
ACC(%) 40.97±2.2 41.90±2.5 43.70±1.9 45.73±2.5 49.18±1.9 51.91±2.4 53.63±4.4 52.44±4.3 45.01±1.4 38.34±2.5 62.86±1.1

NMI(%) 48.48±0.5 47.54±2.5 58.37±0.1 64.53±2.2 71.25±1.0 75.65±2.7 58.04±2.8 47.97±4.6 45.97±0.3 48.49±0.2 78.57±1.1

Task 4
ACC(%) 33.94±0.8 32.38±2.6 43.98±2.1 42.01±1.2 53.57±1.8 53.36±2.4 49.06±1.0 45.60±2.1 40.83±0.6 35.10±2.0 60.13±0.9

NMI(%) 37.49±2.5 38.43±2.7 51.51±0.1 54.65±0.4 77.93±1.7 77.36±2.4 53.18±3.4 41.21±1.3 41.21±0.7 43.24±0.3 77.39±1.6

Average
ACC(%) 39.32±1.6 37.41±2.8 43.32±1.7 46.09±1.0 49.57±1.6 51.39±2.5 48.87±2.7 48.44±2.4 47.87±0.5 37.48±0.5 59.63±1.5

NMI(%) 46.83±0.4 46.09±2.2 55.16±0.1 62.67±1.0 74.39±1.4 77.67±2.7 54.38±2.7 45.65±3.3 46.87±0.1 49.19±0.5 78.02±1.5

hance clustering performance in the target sequential

data, and can achieve the state-of-the-art results.

• Exemplar-based Subspace Clustering (ESC) [41],

which is exemplar-based subspace clustering method

to tackle the problem of large-scale and imbalanced

datasets. We use its ESC-FFS version in this paper.

Offline multi-task clustering model:

• Multi-Task Clustering with Model Relation Learning

(MTCMRL) [42], which is a multi-task clustering

method via automatically learning the model param-

eters relatedness between each pair of tasks.

Online subspace clustering models:

• Online Robust PCA (ORPCA) [6], which is based on

stochastic optimization of batch PCA. We use R0R
T
0

(R0 is the row space of Z0 = L0Σ0R
T
0 , and Z0 is the

clean matrix recovered by ORPCA) as the similarity

matrix to perform clustering.

• Online Low-Rank Subspace Clustering (OLRSC) [27],

which is a novel online implementation of LRR [22],

and aims to reduce the memory cost.

For those competing methods above, we compare with

them utilizing the source codes given by the authors. For

the evaluation, we adopt two performance measures: ac-

curacy (ACC) and normalized mutual information (NMI).

The bigger the value of ACC and NMI is, the better the

clustering performance of the corresponding model will be.

Besides, all the models are implemented in Matlab, and

the parameters of all the competing models are tuned in

{10−3 × i}10i=1 ∪ {10−2 × i}10i=2 ∪ {10−1 × i}10i=2 ∪ {2 ×
i}10i=1 ∪ {40× i}20i=1.

5.2. Real-world Human Motion Datasets

In this section, we use three human motion datasets to

evaluate our proposed model. More specifically, the intro-

duction of these three datasets are as follows:

Keck Gesture dataset (Keck) [11] consists of 14 differ-

ent actions from military signals, where each gesture can be

performed by four subjects, and the same gesture is repeat-

ed three times by each person. Therefore, the total number

of video sequences is 4×3×14 = 168. The frame samples

are shown in Figure 2 (Left). To this end, we have 4 tasks in

total by treating each person as a motion segmentation task.

Multi-model Action Detection dataset (MAD) [10] is

composed of 40 sequences captured from 20 subjects (i.e., 2

sequences per subject). Each subject performs 35 activities

(e.g., Jumping, Throw, Dribble, and kicking) continuously.

In this experiment, we randomly select 5 subjects, and treat

each subject as one task. Frame samples of this dataset are

shown in Figure 2 (Middle).

Electromyography-Vision dataset (EV-Action)

dataset [35] is a novel multi-modality action dataset

collected by ourselves. It contains 20 actions preformed by

50 subjects with 4 different modalities (e.g., RGB, EMG,

Depth, Skeleton) simultaneously which could provide

comprehensive information for human motion related

research. The RGB and depth data have the resolution of

1080× 1920 and 424× 512 respectively. In this paper, we

also randomly select 5 subjects, and treat each subject as

one task. Frame samples are illustrated in Figure 2 (Right).

For each used dataset, we extract low-level HoG features

[3] and obtain a 324-dimension feature vector from each

frame. Due to the fact that different datasets contain dif-

ferent number of motions/actions, we randomly choose 10

motions performed by the same task from each dataset. The

parameters λ1 and λ2 are empirically set to 0.1, 1000, while

the input batch size for our Algorithm 1 is 80 in this paper.

The experimental results averaged over ten random rep-

etitions are provided in Table 1, 2, 3 and Figure 3. From the

obtained results, we can notice that: 1) From Table 1 and

Table 3, we can find that our model achieves the best per-

formance among these competing models on the Keck and



Table 2. Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on MAD dataset: mean and standard

errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset.

MAD Criteria SPE[25] LRR[22] OSC[30] SoftS3C[17] TSC[21] TSS(M)[32] ESC-FFS[41] MTCMRL[42] OLRSC[6] ORPCA[27] Ours

Task 1
ACC(%) 35.18±0.3 31.81±0.6 40.03±2.2 35.58±2.8 52.39±0.6 53.83±0.7 53.60±3.8 40.67±1.0 43.02±2.6 45.74±3.3 59.66±0.3

NMI(%) 43.75±0.8 35.76±0.8 51.73±1.1 51.07±0.6 74.55±0.3 81.96±0.1 56.46±2.8 39.53±2.5 61.25±0.5 69.58±0.9 78.82±0.7

Task 2
ACC(%) 34.60±1.5 33.11±0.1 37.31±0.9 40.36±1.5 52.38±1.3 56.59±0.7 47.45±1.5 39.54±1.6 43.78±2.4 47.38±0.4 64.51±2.8

NMI(%) 43.94±0.8 36.95±0.4 53.11±0.1 51.94±0.6 74.34±0.5 82.37±0.3 55.42±1.3 35.47±1.9 58.44±1.0 71.55±0.5 83.59±1.9

Task 3
ACC(%) 31.35±0.4 35.97±3.2 39.51±3.0 40.68±0.3 47.56±0.5 59.22±0.5 42.82±2.1 39.18±1.1 42.11±2.7 45.65±1.9 63.65±2.2

NMI(%) 36.97±0.7 36.67±2.5 52.15±0.1 53.05±0.6 73.18±0.3 83.79±0.1 49.18±1.6 40.54±2.7 57.47±1.7 63.79±0.7 82.69±1.2

Task 4
ACC(%) 30.96±1.4 32.96±0.6 40.66±1.6 37.82±0.1 53.15±0.2 53.99±0.6 45.29±3.1 42.80±2.1 44.97±1.6 53.37±0.3 65.97±1.8

NMI(%) 33.49±1.3 34.10±1.0 47.82±0.1 41.43±0.5 74.09±0.8 79.46±0.4 51.61±2.9 36.78±1.7 58.60±0.2 71.29±0.9 78.15±0.3

Task 5
ACC(%) 46.96±2.8 45.26±4.2 51.38±0.3 46.79±2.6 51.74±1.2 55.88±0.7 57.34±3.5 54.76±2.2 45.12±2.5 54.37±0.4 61.06±0.9

NMI(%) 47.27±1.2 44.66±1.8 60.51±0.1 55.95±2.2 73.02±0.5 79.56±0.1 61.96±2.8 48.34±3.6 56.56±0.6 69.36±0.1 80.72±1.6

Average
ACC(%) 35.81±1.3 35.82±1.7 41.77±1.6 40.25±1.6 51.45±0.7 55.90±0.6 49.30±2.8 40.55±1.5 43.80±2.4 49.30±1.2 62.67±1.8

NMI(%) 41.09±0.9 37.63±1.6 53.06±0.2 50.69±1.1 73.84±0.5 81.43±0.2 52.45±2.4 38.08±2.2 58.47±0.8 69.12±0.6 80.79±1.0

Table 3. Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on our dataset: mean and standard

errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset.

EV-Action Criteria SPE[25] LRR[22] OSC[30] SoftS3C[17] TSC[21] TSS(M)[32] ESC-FFS[41] MTCMRL[42] OLRSC[6] ORPCA[27] Ours

Task 1
ACC(%) 42.54± 2.0 44.19±3.6 49.06±1.6 47.87±1.2 51.24±2.9 48.08±2.2 44.70±1.6 49.41±2.3 45.41±2.1 43.87±3.8 67.88±3.1

NMI(%) 49.81±2.4 52.73±3.2 59.78±2.5 53.49±1.4 74.26±0.8 77.12±0.1 51.81±3.1 49.64±1.7 57.75±0.8 65.83±1.2 81.52±1.8

Task 2
ACC(%) 49.01±3.0 38.55±2.5 46.31±3.2 52.22±4.4 55.21±3.8 56.73±2.9 50.49±2.9 52.89±3.2 46.55±4.6 56.40±4.9 66.99±3.2

NMI(%) 60.37±2.6 52.30±3.4 62.26±0.1 66.21±0.8 79.36±1.9 80.87±0.9 50.26±2.4 54.21±2.8 59.56±1.2 71.12±0.7 81.51±1.8

Task 3
ACC(%) 48.11±2.5 41.63±3.5 43.22±4.0 52.87±0.6 55.01±2.5 48.58±1.7 57.00±2.3 53.34±3.3 47.64±5.2 53.61±5.2 60.41±2.9

NMI(%) 56.86±1.0 47.62±3.2 65.57±0.5 59.41±0.3 78.47±0.6 78.22±1.1 61.17±1.6 52.57±2.2 60.66±1.3 77.25±1.3 77.71±0.2

Task 4
ACC(%) 39.22±3.5 35.78±0.9 45.93±3.5 38.32±2.2 49.96±1.4 47.82±3.6 53.83±2.2 51.85±0.5 42.12±6.9 54.70±3.9 63.36±3.2

NMI(%) 53.36±2.6 53.42±1.4 64.84±0.1 59.86±0.4 79.12±0.6 81.55±0.3 57.62±1.2 52.66±1.4 55.21±2.5 75.01±2.2 82.35±1.5

Task 5
ACC(%) 43.35±3.4 43.45±3.2 44.29±4.2 45.86±2.4 52.29±1.6 52.91±3.1 51.77±5.6 57.72±3.4 48.52±1.0 53.94±2.2 65.09±3.4

NMI(%) 52.36±2.1 50.05±1.4 58.04±0.1 61.89±1.3 79.18±2.4 78.90±0.9 58.20±2.9 56.19±3.1 58.22±1.8 72.07±0.8 79.63±0.2

Average
ACC(%) 44.45±3.7 40.72±2.7 45.76±3.7 47.42±2.6 52.74±2.5 50.82±2.7 51.56±2.9 51.87±2.3 46.05±3.9 52.51±3.9 64.75±3.6

NMI(%) 54.55±2.1 51.23±2.5 62.10±0.6 60.17±0.8 78.08±1.3 79.33±0.7 53.44±1.7 52.27±2.0 58.28±1.5 72.05±1.0 80.54±1.1

EV-Action datasets. Specifically, our model has 8.24% and

0.35% improvement in terms of ACC and NMI for Keck

dataset, and 12.01% and 1.21% improvement in terms of

ACC and NMI for EV-Action dataset, respectively; From

Table 2, notice that our model can obtain 6.77% in ACC

on the MAD datasets, respectively. It is because that (1)

we adopt the autoencoder structure in the subspace cluster-

ing, which not only contains the motion-aware latent space,

but also adopts encoder and decoder to link the motion-

aware latent space with original data; (2) the useful infor-

mation among different tasks can be fully used to segment

these motions/actions. 2) For the NMI on the MAD dataset,

our model can just achieve the runner-up performance when

comparing with TSS [32] model. The main reason for this

observation is that our model is based on the online learn-

ing algorithm, i.e., we can just achieve a batch of motions

in each time stamp and notice some local temporal infor-

mation on the coming actions. 3) The reason why our mod-

el outperforms the multi-task clustering model MTCMRL

is that even though MTCMRL incorporates the within-task

clustering and cross-task relatedness learning, it do not con-

sider the temporal information. 4) From the presented re-

sults in Figure 3 (different motions are marked as different

colors), we can notice that the competing methods can not

achieve useful segment performance when they do not con-

sider the temporal information, e.g., SPE, LRR, MTCMRL

and OLRSC. Moreover, even though our model just adopts

the local temporal graph information, our model can also

achieve clearer sequential structure. It is because that we

Figure 3. Visualization demonstration of clustering result on MAD

(Subject 2) data. Ten motions are denoted by ten different colors.

use the motion-aware space with multiple tasks.

5.3. Discussions

Time Consumption Generally, one of the major advan-

tage of our model is the time consumption when compar-

ing with offline subspace clustering methods. In order to

investigate the runtime of our model, we utilize the Keck

dataset by selecting the action dataset of the first task. The

runtimes are presented in Figure 4, where we also include

the time cost of spectral clustering or k-means. The size of

each input batch for our model is 80. Notice that our mod-

el significantly outperforms most offline single-task cluster-



Figure 4. The demonstration of computational time (seconds) a-

mong the ten competing clustering models, where each bar de-

notes different competing models.

Figure 5. Clustering results: ACC (Left) and NMI (Right) on

MAD dataset with different number of motion.

Figure 6. The effect of parameters λ1 and λ2 on Keck dataset in

terms of ACC (left) and NMI (right), respectively.

ing methods, such as LRR and TSS, and offline multi-task

clustering model, MTCMRL. Besides, our model can also

achieve comparable runtime when comparing with other t-

wo online methods, i.e., OLRSC and ORPCA. However,

our model always identifies more correct samples as well

as consumes comparable running time. All the experiments

are executed on the computer with 8G RAM, Intel i7 CPU.

Effect of Motion Number By removing some motions

and set the motion number of MAD video from 2 to 10, we

justify the effect of motion number on all competing mod-

els. As depicted in Figure 5, we can observe that our mod-

el can consistently achieves much better results than other

models. In addition, the performance of our model is more

stably when the number of motions is changing. This ob-

servation also demonstrates the effectiveness of our model.

Parameter Investigation In order to study how the

parameters λ1 and λ2 affect the clustering performance

of our model, we use Keck dataset in this subsec-

Figure 7. The effect of projection size k and p of D and P t in

terms of ACC and NMI, respectively, where different lines denote

the clustering results on different datasets.

tion. By varying the parameters λ1 and λ2 in range

{10−5, 10−4, 10−3, 10−1, 101, 103}, we present the cluster-

ing performance of our model in terms of ACC and NMI in

Figure 6. Notice that the performance of both ACC and N-

MI change with different values of parameters, which verify

that the appropriate temporal regularizer can make the clus-

tering performance of our model better.

In addition, we also show the clustering performance

on these three datasets when the projection sizes of

motion-aware matrix D and projections P t vary in range

{5, 10, 20, 30, 40, 60, 80, 100}. As the results shown in Fig-

ure 7, our model can achieve better results when the size

of motion-aware matrix approaches the motion number.

Whereas the result of our model is relatively stable when

the size p of projection P t is larger than 40. This obser-

vation also indicates that our proposed model can get an

accurate result when p ≥ 40, and k around 10.

6. Conclusion

In this paper, we propose an online multi-task cluster-

ing model for multi-agent human motion segmentation task

by integrating a linear encoder-decoder framework. The

encoder-decoder paradigm can learn a latent motion-aware

space via maximizing both the reconfigurability of the o-

riginal motion data from the motion-aware space and the

predictability of the motion-aware space from the original

motion data. To address cross-task problem, projection for

each task is jointly learned to mitigate the distribution diver-

gences. We also derive a general online learning algorithm

for dynamic environments. Experiment results show the ef-

fectiveness and efficiency of our model.
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